SAMPLING A LIQUID FROM A DETFORMABLE STRATUM
THROUGH A HIGHLY PERMEABLE WINDOW

A. V. Kolmogorov and V. N, Nikolaevskii ' UDC 532.546

1. 1In the axially symmetrical case, the system of equations for an elastoporous stratum
saturated with liquid consists |1] of the equations of motion for the solid phase:
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the equations of motion for the liquid:
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and the equations of continuity for the solid and liquid phases:
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Here the variables are the deviations from stationary values of the quantities and the sym-
bols are as follows: m, porosity (mo, the initial value); ui{, a component of the solid-
phase displacement; wy, a component of the liquid velocity; e, the bulk deformation of the
solid phase; p, pore pressure; Oij, the stress in the solid phase; o ij, the effective
Tertsapgi stress; 6f, the first invariant of this; k, permeability; u, viscosity of the
liquid; B, and Rz, compressibility coefficients for the material of the solid and liquid
phases; and K, G, and v, the bulk modulus, shear modulus, and Poisson's ratio for the matrix.

Let the viscous liquid be taken from a closed stratum of radius R and thickness 2h via
a planar horizontal crack of radius p with a flow rate Q(t). In the case of highly effective
large-scale hydraulic disruption |2]|, the radius p may be comparable with R and much greater
than h. For simplicity we assume that the depression in the stratum due to the liquid tapoff
does not cause any change in the total stress, or in other words in the rock pressure ng,
cacting on the external edge of the stratum from the surrounding rocks. Correspondingly, at the
boundaries of the stratum ng =const and the increments in the rock pressure are zero: Tij =
(Irj_‘] — pSjj =0.

The coordinate system is chosen such that the origin coincides with the center of the
crack and the stratum (Fig. la).  As the boundary conditions are symmetrical, we need consi-
der only the region z220, i.e., the problem corresponds to tapping off liquid through a crack
in the top or bottom of a stratum of thickness h (Fig. lb).

2. The boundary conditions for an inflinite stratum take the lorm
.. O, 6. 0, dpldz -0 (z N, 0<{r < oo); (2.D

oL 0. w0 (z 0, 0<Ir<Coo); (2.2)
apldz O (v=r<Coo, 2 0}, p p )y O<Ir<Cp, z 0),
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and the initial conditions are
P =Ppqg, u; =0, o}; =0. (2.4)

The variations in pore pressure p over the thickness h of the stratum are less than
the characteristic variations over r, and therefore in (1.1) it is permissible to replace
p(r, 2z, t) as an approximation by the weighted mean pressure p*(r, t) taken over the thick-
ness of the stratum: :

h
p*(r, t)=—;}j‘p(r, z, t)dz, dp*/9z=0. (2.5)
0

We use integral Hankel transformations [3] of the first order with the first equation of
(1.1) and of zero order with the second equation in (1,1). Then we get correspondingly

o*u, — ou, -
Py - agzur hat bg oz + CEP* =0,
- _ 2.6
62uz . du, ( )
a—a;?'—guz—l‘bﬁ == =0,

where a=2(1—v)/(1—2v); b=(1— 2v)h e =(1—e)/[2G (1 — my)];
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and it is assumed that the following conditions are obeyed:
r2du for — 0, ru, -0 (r—0),
V;—au,./ar—>0, Vr—u,——>0 (r — oo).

The solutions to (2.6) are sought in the form
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The functions A(E), B(E), C(E), D(E) should be selected in accordance with boundary condi-

tions (2.1) and (2.2). If we apply Hankel transformations to (1.2)-(1.5), we get on the
basis of (2,7) that
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where
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0
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If now we integrate (2.8) with respect to z from O to h and divide by h, we get an equation
for the transform of the mean weighted pressure p*:
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where Y(Eh) =2sinh®(eh)/[£h(sinh(2&h) +2¢h) .

We use the method of [4] to replace the inhomogeneous boundary condition of (2.3) by a
homogeneous one at z =0:

opldz = Q) (2akp ]/p~ —r) (0 r<<p),

apldz = O (p < r < ), (2.10)

where Q(t) is the flow rate of the liquid as in (2.3).

We apply a zero-order Hankel transformation to (2.10) and substitute the resulting
expression into (2.9). Then we can eliminate the value of the gradient 3p/dz and obtain the
effective value

BT (4 ap (h)) - KE® (o)™ Tp* = Q (1) sin (Ep)/2morkpt (2.11)
The solution to (2.11) with p*(g, 0) =0 is |5]
© 1
[ %, e dt - — p(2mkhEp) (st (Eh) + ) sin (2p) [ Q (1) e e, (2.12)
0 o

where @ (E) = [pa(1 -+ y/2)] Ik(1 + DER)I
MER) = (W2)IER(sh(2ER) -I- 28h) — 4 she(Eh) )/ [2ysh2(Eh)--Eh(sh(2ER) - 2ER)].
In the case of a very thin stratum, £h »~0 and ®(£Eh) >0, while for a thick stratum Eh -
w, ®(ED) ry/2.
If a constant {low rate is taken from the crack

;0 1<

then (}(s) =(os” " and it follows from (2.12) that

s pE(E, 1) Ml — @/ 2n k) sin (5p)/ (skp (st (ER) - ), (2.13)

0

The distribution of the mean weighted pressure in the stratum is obtained from (2.13) by
successively applying inverse Laplace and Hankel transformations:

P (ry 1) = — Qo/(2reh) | sin (Ep) (1 — exp (— 1831 (BRY) Ty (Br) § %07 "dE. (2.14)
¢

For a thin stratum we have from (2.14) that

o~

PEQry 1) = — Qop/(2mkd) | sin (Ep) (L exp (= 155)) Jo (Er) (5%) 7K, (2.15)
0
which coincides with the solution in the local-elastic formulation {5] for n = n/|ka(l +v/
2)]. 1f the stratum is an ideally cemented porous medium [L], then £ =1 and v =0, and from
(2.14) we have (2.15) with % = /lkme (B2 — B . In that case, the effective elastic capac-

ity of the stratum is determined only by the difference in compressibilities between the
soltid and liquid phases, or in other words the locally elastic solutions are obtained from
(2.14) if the stratum is very thin or if the deformation of the stratum is dve to the com=
pressibility of the phases, vhile the displacement of the solid particles one relative to
another can be neglected.

If on the other hand the stratum is a solt uncemented rock, then the deformation is
due to displacement of the solid particles reltative to one another. Then ¢ 1, yx 1 — 2v,
and therefore

T(ER) - It - 200 - 20AGH  m)( v D E ] (2.16)

From (2.7) and (2.14) we gel equations Tor displacements up and u, in the stratum?
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Let the pressure at the crack p,(t) be equal to the pressure averaged over the area of
the crack:
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Then
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3. 1f the stratum is bounded by an impermeable contour of radius R, we can specify the
boundary conditions at the contour:

u,=0, 6l =0, dp/or =0 (r= R, 0<2<h). _ (3.1)
Then to solve system (1.1)-(1.4) while retaining conditions (2.1)-(2.3) we should use inte-
gral Hankel transformations over a finite interval [3]:

R

-lzr (gl z, t) = j‘ ri, (T‘, z, t) Jl (Er) dT,
n 0 (3.2)

R
2 (82, 8) = [ rus(r, 2, ) T € dr, (8, ) = [ rp* (ry 1) Ty (Br) .
[} L]

Again in (1.1) we replace the pore pressure p(t, z, r) by the mean weighted value p*(r, t)
and integrate (l.1l) by parts and use boundary conditions (3.1) to get the equations

u — ou, -~ F ou,
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*, - @ G-3)
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If we choose £ in (3.3) such as to be the root of
&R J,(§R) =0, (3.4)
then we use the following equations [3] to invert (3.2):
2 —_ Iy (87
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Here the sum is taken over all positive roots of (3.4). Then (3.3) will have the form of
(2.6), and the solutions will take the form of (2.7), but with £ everywhere replacing E.
Similarly, we get the expression for the mean weighted pore pressure:

P* (s, ) = (— Qop/(nkh)) sin (8:0) [1 — exp (— 18%/v (k)] 0 ™"87% (3.6)

Inversion of (3.6) according to (3.5) gives the solution as

P* (7, £) = (— Qou/(nkh)) 2R~ 3 sin (8;0) [1 — exp (— 184/ (E k)] ﬁg—% oI 3.7)
[ o\

For large values of EjR one can use the asymptotic expansions of the Bessel functions

[4]:
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Jo(RE:) = V 2(nRE;) cos (RE: — n/4),
J(RE;) =~ V 2/(nRE;) cos (RE; — 3m/4).
In accordance with (3.4) and (3.8) we have

Y 2E./np sin (§;R — n/4) = 0, &R = ni — n/4,
AE =& — By = w/R.

Then the series of (3.7) can be transformed to the form

(3.8)

p*(r, t) = (— Qop/nkh) Zsin (&:0) (1 — i/ ‘(Ei">) g,:R Jo (Bin)-

For &3R ~0, AEj +dE; one can replace the sum by an integral:

. in ; 2
P, = (= Quumih i 3 el (1 — ) 1, 3 88,

= (— Qup/akh) | sin (5:p) (g20) ™ (1 — e~8/<EM) 7, (12 ks,

which again leads to the solution of (2.14) for an unbounded stratum. For the displacements
we have the expressions

ur = (2/R%) 3 (p* (81, 1)/8:) {go (E:h) [z sh (Bi2) +

+ ch (§:2) (1 — 2v — &k oth (§i))] + 4} T2 (81T, (RE)P,
u; = (2/R?) X (p* (&, 1)/5:) g9 (§:h) {sh (8:2) [2 (1 + v) + Esh cth (Eih)]

— Eizch (8:2)} Jo (Bar)/[Jo (RESI™.

4., Let the matrix show creep due to the rheological properties of the links between
solid particles, with e<<l. 1In that case the moduli relating to the repacking deformations
are time operators. These are differential or integral operators for a linear viscoelastic
material [6].

1f the type of the boundary conditions does not alter throughout the process at the
boundaries of the stratum and at the crack, one can use Volterra's principle [7], viz., the
solution to the viscoelastic problem can be found by replacing all elastic constants by
Laplace transforms of the corresponding operators in the solution for the analogous problem
obtained by integral Laplace transformation, with subsequent reversal of the new solution.

We derive a solution for a viscoelastic stratum by means of Volterra's principle. With
the condition e<<1l, y =1—2v, and the function T(£h) is defined by (2.16). If v =const, only
one modulus is_a time operator, for example, the shear modulus G. We determine the form of
the transform G(s) for the operator G(t). We restrict ourselves to a Maxwell viscoelastic
model [6]. Then the uniaxial compression of the dry porous stratum is described by

oal; | ol o (94 ). 4.1
= T T EBu\w, ) (4.1

where E is the instantaneous Young's modulus, n is viscosity, and 6 =n/E is the matrix relax-
ation time. These parameters can be determined from creep experiments in one-dimensional
compression, i.e., on rheological test of the type of (4.1). '
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We apply a Laplace transformation to (4.1) and use the initial condition Gfii (i, 0) =
Edujy (i, 0) /3% to get

525 (s + 1/8) = Esou,/dx;. (4.2:
Then for the operator Ls) we get the expression
E (s) (1 — my) = 6%:/(9uif9x;) = Es (s 4 /).
Consequently,
Gis)t — my) = E(s)(1 — mo)/2(1 + v) = Es(2(1 -+ v)(s -+ 1/8)1-1. (4.3)

From (2.16) and (4.3) we get the following expressions for the viscoelastic function 1°(&h)
and the elastic one t(Eh):

v'(Ek) = w(ER)1 + (s8)~1),
HER) = p(1 — 2v)(1 + ¥)(3/2 — WWEE(L — v)(1 -+ D(ER)~1.

We substitute (4.4) and (2.16) into the solution for the pressure field in an unrestricted
elastic stratum of (2.14) to get the viscoelastic solution

(4.4)

§ P* (&, 1yt = Ep (— Qou/2nkh) sin (EpY/s (x (5h) (s + 67%) + E2). (4.5)

¢

Successive inversion of (4.5) in accordance with the rules for Laplace and Hankel transfor-
mations gives

P*(r, t) = (— Quu/2nkh) | sin (8p) (1 — exp(—(67* + E/7 (ER)) 1)) 7o (&) (p (v (ERY/B + E)dE.  (4.6)
¢
Similarly, for a closed stratum we get
P*(r, 1) = (— Qo/2kh) 2R™* X sin (§,0) (1 — exp(— ¢ (87

+ EH/7 (&:h)))) To (Bir) ([ Ty (RED I (T (B:h)/0 + ED)). (4.7

The solutions of {4.6) and (4.7) for T(Eh)£%/8 += go over to the solutions of (2.14)
and (3.7) corresponding to an elastic stratum.

5. 1If we introduce the dimensionless quantities: x =&p, h' =h/p, p' = =p,.271kh/Q.H,
8' =t(xh")p?8~', T =t(1 +¢(Eh))/1p?, then from (2.14) we get the result for the average pres—
sure in a window: :

P’y = [sinz(t — exp(— T22 (1 + QW] J, () 2. (5.1)
¢

We average the viscoelastic solution of (4.6) over the area of the crack to get in
dimensionless form that

oo

(p'y = [sinzit —exp(—T(8' +22 (1 + Q@) ;@) (2 (0 (4 + D (k') + 7)) da. (5.2)

1]
We introduce the fellowing dimensionless quantities for a closed stratum: z; == §,R,
p' = p/R, K = MR, T =t(d + DER)/W(ERRE, 0 = 1(x;h)RM, p' = — p, () 20kh/Qyu.

We average (3.7) and (4.7) with respect to the area over the crack to get the elastic
solution in dimensionless forms

> =3 sin(zp') (") [1 — exp(— T2} (1 + ® (@) T4 (2:0) 17y (3) 2 (5.3)
i=1

and the viscoelastic solution

{p)= g sin (z;0") [1 — exp(— T (z3(1 + D (z:h')) +
+ 0 D1+ @ (@2) (@007 (1 + D (2’ )) 2%+ 6) 7 (2:0) o (@) 5.4
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The following values were used in (5.1) and (5.2) for a detailed calculation by comput-
er: pok™' = 0.96, vy =0.6, 6" =2 x1073(p) ?, while the values of p and h' were varied. There
is only a very weak dependence of the solution on h' in the range 0.01<Ch'<C10 (with the
values stated for the other parmeters); the change is not more than 5% of the solution for
h' =0.1, 1gT =2. Figure 2 gives curves relating the dimensionless pressure <p'> to the
dimensionless time T. Curves 1 and 2 correspond to the solution (2,15) for the locally elas-
tic case and (5.1) for the nonlocally elastic case for an infinite stratum, while curves 3
and 4 represent the viscoelastic solution of (5.2) with €' =0,002 and 0.2, The mode of vari-
ation in <p'> with T shows that the time taken to reach the steady state and the value of the
pressure p' in that state are dependent on the matrix relaxation time and on the relative

dimensions of the window.

Figure 3 shows curves relating the pressure p' to the dimensionless time for a closed
stratum. The solid lines I-III correspond to the elastic solution with the values p' =10"%;
1073%; 10™2%. For comparison, we give two broken curves that correspond to the elastic local
solution for #(£ih) =0. 1In an elastic stratum, the process does not reach a steady state,
and the effects of the contour of the stratum cause an unrestricted increase in the pressure
<p'>, which is necessary to maintain a constant flow rate. Curves 1-3 correspond to the
viscoelastic solution of (5.4) with ' =2-10%; 2.10%; 2.107,

The dependence of the dimensionless pressure at the crack on the viscosity of the matrix
and the radius of the crack in (5.4) is the same as that in (5.1) (viscoelastic solutions).
The less the viscosity of the matrix and the greater the crack radius, the sooner the steady
state sets in and the less the corresponding pressure change.

The choice of optimum window parameters and tapoff conditions is thus associated with
the relaxation parameters of the matrix in the deformable stratum.

We are indebted to ﬁ. A. Bondarev for interest.
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